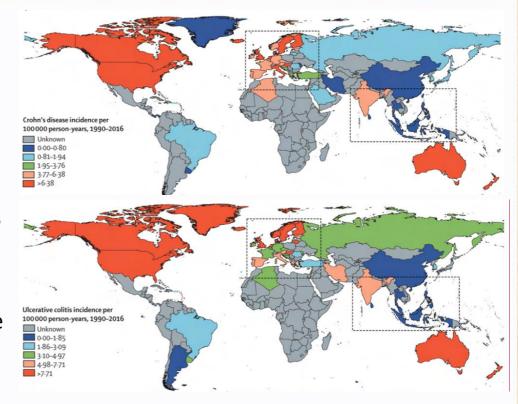

GI Conditions in Life Insurance

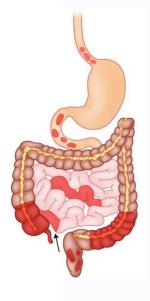
Updates on Inflammatory Bowel Disease and Barrett's Esophagus

Tobias Schiergens


Inflammatory Bowel Diseases

IBD - Epidemiology

- 3.1 million (1.3%) of U.S. adults had ever received a diagnosis of IBD
- Accelerating incidence has stabilized in Western countries
- Higher prevalence of IBD among non-Hispanic whites
- Age of onset usually between 15 and 30 years
- Slight female predominance in adult-onset CD, slight male predominance in UC

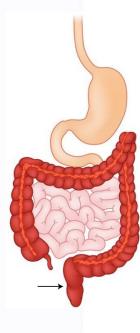

	Incidence per 100 000 person-years				Prevalence per 100 000				
	Crohn's disease		Ulcerative colitis		Crohn's disease		Ulcerative colitis		
	Lowest estimate	Highest estimate	Lowest estimate	Highest estimate	Lowest estimate	Highest estimate	Lowest estimate	Highest estimate	
North America	6-30 (California, USA)	23.82 (Nova Scotia, Canada)	8-8 (Olmsted County, USA)	23·14 (Nova Scotia, Canada)	96·3 (California, USA)	318·5 (Nova Scotia, Canada)	139·8 (Quebec, Canada)	286-3 (Olmsted County, USA)	

Centers for Disease Control and Prevention; CDC Ng et al., Lancet 2017;390:2769

	Crohn's Disease	Ulcerative Colitis
Symptoms	•	sea, vomiting, loss of appetite, weight loss, fever, fatigue
Localization	Entire digestive tract	Colon and rectum, backwash

Associations

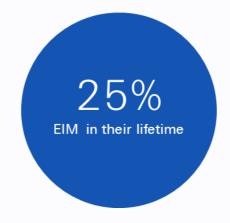
	10 001, 100	ilgao
Localization	Entire digestive tract -Small bowel involvement: ~ 80% -Perianal disease: ~ 40%	Colon and rectum, backwash ileitis
Inflammation	Transmural	Superficial mucosal
Histology	Granulomas, increased goblet cells	Crypt abscesses, depletion of goblet cells
Smoking	Aggravating	Protective
Endoscopy	Skip lesions, deep ulcers, cobblestone appearance	Continuous lesions, pseudopolyps
Complications	Strictures, fissures, fistulas, venous thromboembolism, colorectal cancer	Toxic megacolon, venous thromboembolism, colorectal cancer
Extraintestinal manifestations	Erythema nodosum, pyoderma g	angrenosum, arthritis, ocular

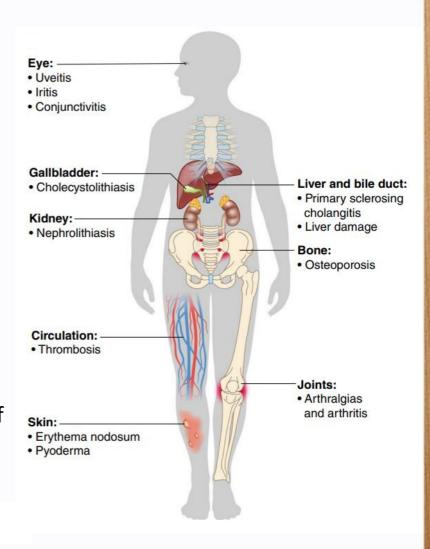

Gallstones Primary sclerosing cholangitis (PSC)

Neurath, Nature Immunology 2019;20:970

manifestations

www.aaimedicine.org


Schiergens, Basics Surgery, 2018, 4th ed., Elsevier


IBD – Extraintestinal Manifestations

- Arthritis / arthropathy most frequent EIM
- Liver and lung most relevant for mortality
- EIM present prior to surgery will persist in about half of patients after colectomy. Complete cessation of EIM after colectomy may be less common in CD than in UC

Neurath, Nature Immunology 2019;20:970 Roth et al., United European GastroenterolJ.2021;9:773.

Crohn's Disease – Severity

- Classification based on age of onset, disease location, and disease behavior (Montreal Classification)
- Management based on disease manifestation, activity (CDAI), severity and risk
 - Symptoms
 - CRP, fecal calprotectin
 - Age at diagnosis
 - Distribution of bowel inflammation
 - Ulceration on colonoscopy
 - Perianal complications
 - Extra-intestinal manifestations
 - Prior surgery / intestinal resections
 - Penetrating or stricturing disease

_										
Ag	9	a	t	d	ıa	a	n	0	S	ıs
~~9	_	-	•	-	•	9		•	-	•

A1 below 16 years

A2 between 17 and 40 years

A3 above 40 years

Location

L1 ileal

L2 colonic

L3 ileocolonic

L4 isolated upper disease*

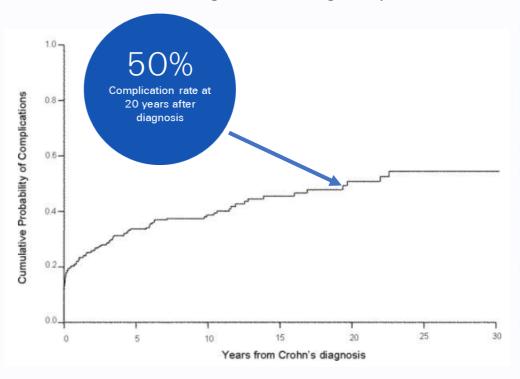
Behavior

B1 nonstricturing, nonpenetrating

B2 stricturing

B3 penetrating

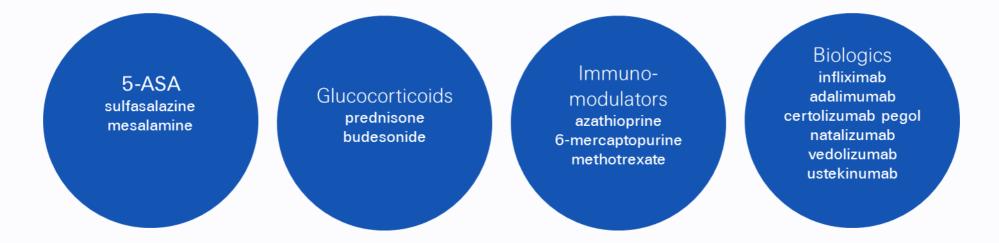
p perianal disease modifier¶


Regueiro et al., UpToDate.com Sandborn et al., Gastroenterology. 2014;147:702

Crohn's disease – Disease course

- In ~ 20% prolonged remission after initial presentation
- Ileal involvement associated with a shorter time interval
- Risk factors associated with progressive disease:
 - Age < 40 years
 - Tobacco use
 - Perianal or rectal involvement
 - Steroid-dependent disease

Penetrating or stricturing complications



Solberg et al., Clin Gastroenterol Hepatol 2007;5:1430 Thia et al., Gastroenterology 2010;139:1147 Beaugerie et al., Gastroenterology 2006;130:650 Cosnes et al., Gut 2012;61:1140

Crohn's Disease – Medical treatment

- Induction and maintenance of remission
- Managing relapse / refractory disease
- Management of complications

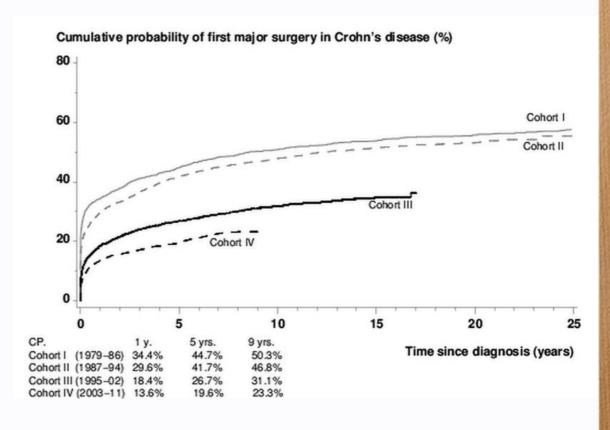
Regueiro et al., UpToDate.com Sandborn et al., Gastroenterology. 2014;147:702



Crohn's Disease – Endoscopic treatment

Management of symptoms and / or complications

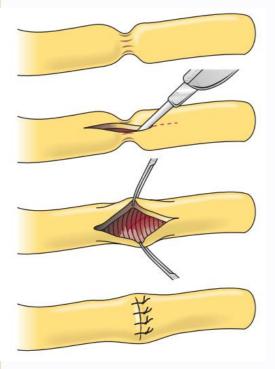
Intestinal obstruction (fibrotic strictures)


Hoffmann et al., Inflammatory Bowel Diseases, 2019, 3rd ed., Springer

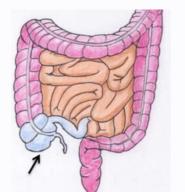
Crohn's Disease – Surgical treatment

Management of symptoms and complications

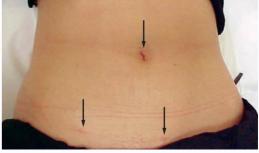
- Bowel perforations, abscess, peritonitis
- Bleeding
- Intestinal obstruction (fibrotic strictures, conglomerates, etc.)
- Enteric fistulas / perianal fistulas
- Cancer
- Surgical treatment
 - Careful resections (ileo-colic)
 - strictureplasty
 - Oncologic surgery



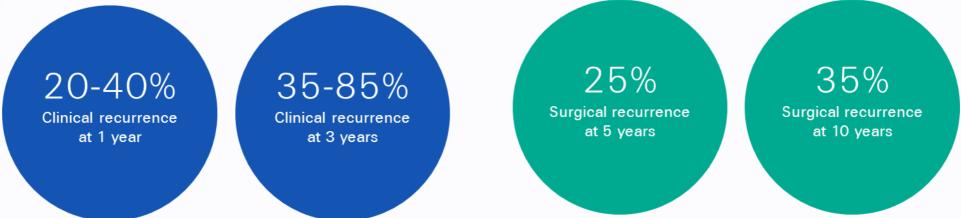
Schiergens, Basics Surgery, 2018, 4th ed., Elsevier Rungoe et al. Gut 2014;63:1607


Crohn's Disease – Surgical treatment


Strictureplasty



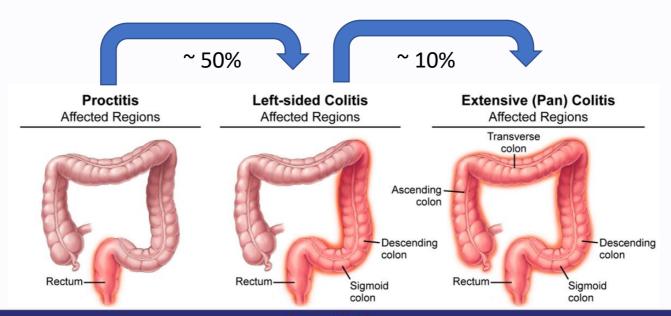
Resection



Schiergens, Basics Surgery, 2018, 4th ed., Elsevier Hoffmann et al., Inflammatory Bowel Diseases, 2019, 3rd ed., Springer Quon et al., Abdominal Imaging 2015;40:1034 Polle et al., Nat Rev Gastroenterol Hepatol 2007;4:324

Crohn's Disease – Surgical treatment: Recurrence

- Smoking: Recurrence at 10 years, clinical: OR 2.2; surgical OR 2.6
- Genetics, e.g. NOD2/CARD15 mutation
- Disease duration: OR ~ 1.10/a
- Disease extent: proximal gastrointestinal and diffuse disease that involves the colon
- Penetrating, fistulizing disease: OR 4.1
- Stricturing disease: OR 2.4
- Surgical technique: Side to side vs. end-to-end anastomosis


Schiergens et al., Z Gastroenterol 2017;55:57 Swoger et al., Gastroenterol Clin North Am 2012;41:303 Fumery et al., Aliment Pharmacol Ther 2017;45:381 Frolkis et al., Am J Gastroenterol 2014;109:1739 Reese et al., Int J Colorectal Dis 2008;23(12):1213 Alvarez-Lobos et al., Ann Surg 2005;242:693 Avidan et al., Digestion 2005;72:248 Sampietro et al., Clin Gastroenterol Hepatol 2009;7:183

Ulcerative Colitis – Severity and Disease Extent

- Clinical disease activity index, Montreal classification, Mayo scoring system
 - Symptoms (number of stools, bleeding, fever,)
 - Anemia, anorexia, albumin
 - Severe endoscopic disease (eg, deep ulcerations)
 - Systemic toxicity: CRP, fecal calprotectin
 - Extraintestinal manifestations

Age

Peppercorn et al., UpToDate.com Kayal et al., Clin Med 2020;9:94 Hashash et al., UptoDate.com

Ulcerative Colitis – Medical treatment options

Mild to moderate disease

- **Proctitis or proctosigmoiditis:** Topical mesalamine (topical glucocorticoids), oral 5-ASA agents
- **Left-sided or extensive colitis:** combination of an oral 5-ASA agent plus rectal mesalamine / +/- budesonide MMX / systemic glucocorticoid therapy with prednisone

Moderate to severe disease

- TNF therapy (infliximab, adalimumab, golimumab) with or without an immunomodulator (eg, azathioprine) is used to induce remission
- vedolizumab (anti-integrin antibody), ustekinumab (anti-interleukin 12/23 antibody), glucocorticoids
- Non-responders: Janus kinase (JAK) inhibitors, tofacitinib, upadacitinib, ozanimod, iv glucocorticoids

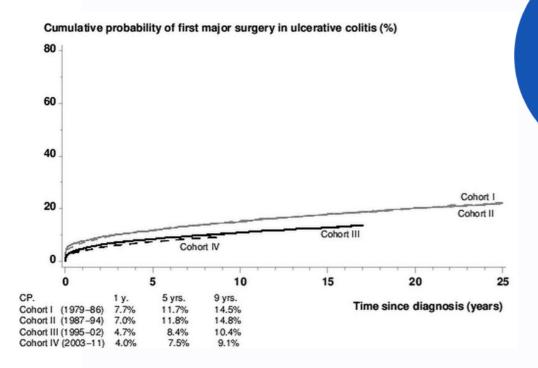
Regueiro et al., UpToDate.com Sandborn et al., Gastroenterology. 2014;147:702

Ulcerative Colitis – Complications

Acute

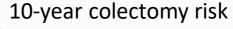
- Severe bleeding: in up to 10 % of patients
- Fulminant colitis and toxic megacolon: > 10
 stools per day, bleeding, abdominal pain, distension, and sepsis
- Perforation: most commonly as a consequence of toxic megacolon

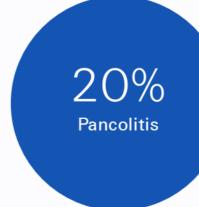
Chronic


- Benign strictures: in ~ 10%, most frequently in the rectosigmoid colon and may cause symptoms of obstruction
- Dysplasia, colorectal cancer

Peppercorn et al., UpToDate.com Santos, Current Topics in Surgery 2021, DOI: 10.5772/intechopen.98987

Ulcerative Colitis – Surgery

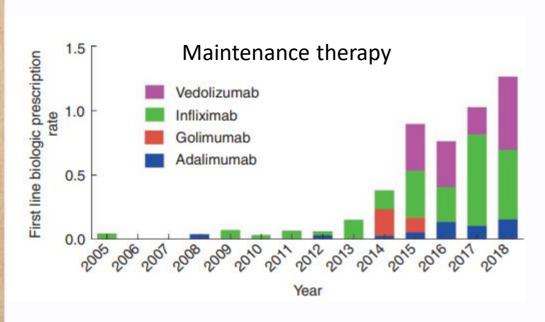

Hoffmann et al., Inflammatory Bowel Diseases, 2019, 3rd ed., Springer Rungoe et al., Gut 2014;63:1607

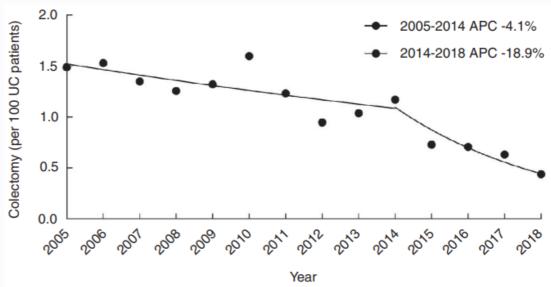

Elective

Moderate to severe disease, persistent symptoms despite medical therapy, intolerance of medical therapy, dysplasia, cancer

Urgent
Acute fulminant
colitis refractory to
medical treatment

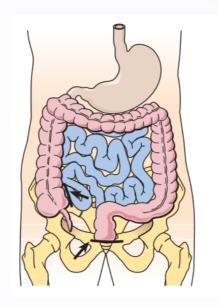
Emergency
Perforation, toxic
megacolon, massive
hemorrhage

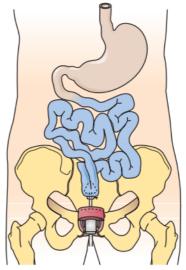


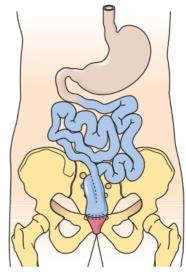


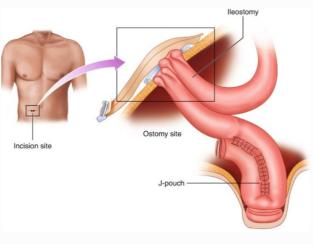
Ulcerative Colitis – Surgery

Jenkinson et al., Colorectal Dis 2021;23:1175




Ulcerative Colitis – Surgery

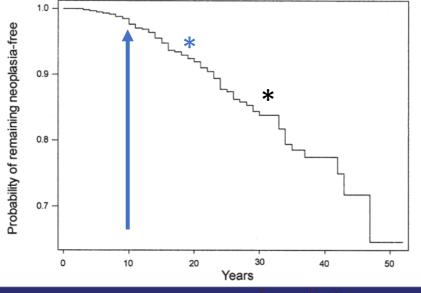

Elective restorative proctocolectomy with ileal pouch-anal anastomosis (IPAA) as one, two-, or three-stage procedure

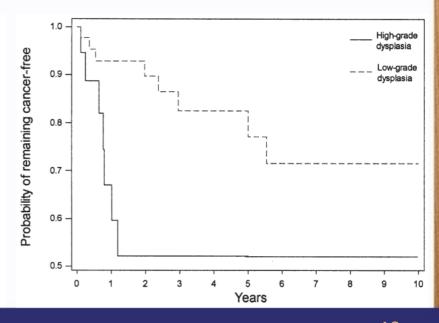

- total abdominal colectomy and ileostomy
- completion proctectomy with an IPAA and loop ileostomy
- loop ileostomy gets reversed

Schiergens, Basics Surgery, 2018, 4th ed., Elsevier Giambartolomei et al., Mental Conditioning to Perform Common Operations in General Surgery, 2020, Springer

Inflammatory Bowel Diseases – Cancer Risk

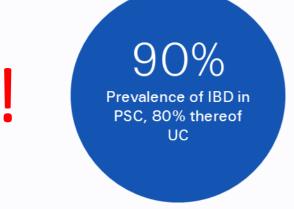
- CRC risk in longstanding CD involving the colon is probably comparable to UC
- (Weak) indications of increased risks: squamous cell carcinoma of the anus and skin, adenocarcinoma of the small bowel, duodenal neoplasia, testicular cancer, leukemia / hematologic malignancies

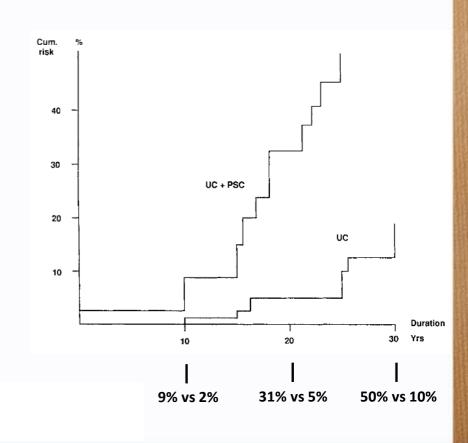

UC


- The <u>extent of colitis</u> and <u>duration of disease</u> are the two most important risk factors for CRC
- The CRC risk begins to increase at ~ 8 10 years

Cumulative incidence

- 3-5 % after 20 yrs. *
- 8-10 % after 30 yrs. *


Hemminki et al., Ann Oncol. 2009;20:574 Levin, Cancer 1992;70:1313 Rutter et al., Gastroenterology 2006;130:1030



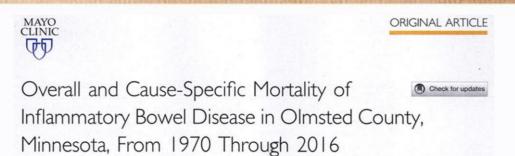
Inflammatory Bowel Diseases – Primary sclerosing cholangitis

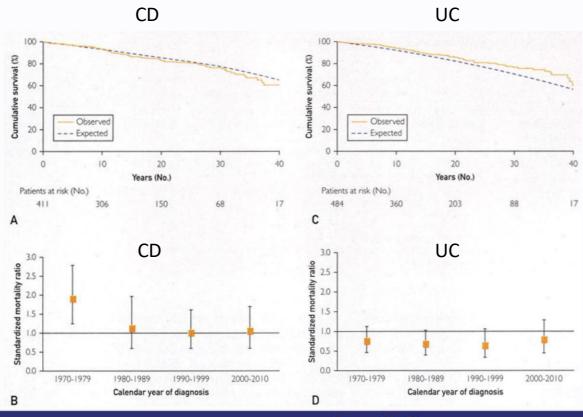
- Median survival without liver transplantation: 10(-20) yrs.
- Cholestasis, P-ANCA (30-80%), IgM increase (40-50%)
- Colitis usually has a mild or quiescent course
- Higher risk of pouchitis and peristomal varices following proctocolectomy + IPAA
- Patients with concurrent PSC and IBD have a higher risk of colorectal cancer
 Loftus et al., Gut 2005;54:91
 Mertz et al., Ann Gastroenterol 2019;32:124
 Broomé et al., Hepatology. 1995;22:1404.

ORIGINAL ARTICLE

Crohn's Disease and Ulcerative Colitis Are Associated With Elevated Standardized Mortality Ratios: A Meta-Analysis

- 35 original articles
- 32,269 (CD) / 18,952 (UC) patients
- All-cause mortality UC: **HR 1.19** (95%-CI, 1.06–1.35)
- All-cause mortality CD: HR 1.38 (95%-CI, 1.23–1.55)
- Mortality from colorectal cancer, pulmonary disease, and non-alcoholic liver disease was increased, whereas mortality from cardiovascular disease was decreased


	Summary SMR
Overall: UC	1.16
Overall: CD	1.46
CRC: UC	2.82
CRC: CD	3.12
Cardiovascular disease: UC	0.90
Cardiovascular disease: CD	1.00
Pulmonary disease: UC	1.41
Pulmonary disease: CD	1.60
Nonalcoholic liver disease: UC	2.26
Nonalcoholic liver disease: CD	2.82


Bewtra et al., Inflamm Bowel Dis 2013;19:599-613

Ulcerative C	olitis: 1.19				Crol	nn's D	isease: '	1.38	
Iversen (1968)	UC: all cause								
+Gilat (1976)	North America	0.92	0.74	1.14	55%	0.14	2		
+ Ekbom (1992) -	United	1.21	0.96	1.54	86%	0.00	5		
+ Probert (1993) -	Kingdom								
+ Stewenius (1995) —	North Europe	1.23	1.10	1.40	79%	0.00	8		
+ Persson (1996) -	South Europe	1.01	0.69	1.49	80%	0.00	4		
+ Saro (1999) —	•								
+ Ishibashi (1999) —	Other	1.14	0.65	2.01	76%	0.00	5		
+ Farrokhyer (2001)—	countries								
+ Winther (2003) -	EC-IBD	1.09	0.86	1.38	_	_	1		
+ Card (2003) -	CD: all cause		_						
+ Masala (2004) -	North America	1.36	1.19	1.54	0%	0.35	2	-1	
+ Jess (2006) -	United	1.30	0.99	1.72	90%	0.00	5		
+ Jess (2007) —	Kingdom	-100	****						
+ Hutfless (2007) -	North Europe	1.54	1.29	1.84	73%	0.01	5		
+ Hoie (2007) —	•								
+ Solberg (2009)	South Europe	1.62	1.23	2.14	0%	0.62	3		
+ Romberg- (2010) _	Other	1.29	0.72	2.33	0%	0.89	3	2	
Camps	countries								
	1 2 3					0	KOLIMOLMIEGA IVI	ortality No	HIO
	Standardized Mortality Ra								
	Be	wtra et al., Ii	nflamm Bowe	l Dis 2013;1	19:599–61	3			

Aniwan et al., Mayo Clin Proc 2018;93:1415

IBD – What's new?

Research

Understanding of Pathogenesis

- Inflammation processes. immunology
- Dvsbiosis (microbiome, virome)

Personalized approaches

- NOD2
- IL-receptors

Therapy

Medical Treatment

- JAK-inhibitors
- IL-23 inhibitors
- S1P receptor modulators
- PDE4 inhibitors
- TLR9 agonist
- Cell-based (e.g., MSCs)
- Microbiota-based innovations, e.g., SER-287
- Nanoparticles

Diet

Complementary interventions

Challenges

Timing, selection, combination and sequence of the best therapy

Holistic healthcare

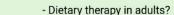
- Physical and mental wellbeing
- Quality of Life

Remission Induction and Maintenance strategies

Conventional therapies

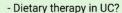
- 5-ASA/Thiopurines/MTX
- Corticosteroids
- EEN (paediatric CD)
- Biological therapies or small molecules
- Surgery

CAMs supported by evidence as add-on therapy


- Curcumin
- H. dvsenterica
- A. paniculata
- A. absinthium
- CDED

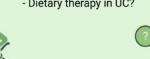
Improve quality of life

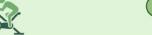
Achieve disease control


Assess the need for

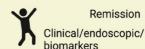
- Dietary optimalisation
- Physical excercise
- Mind-body practices
- Psychological interventions
- Herbal and medicinal products - Increase in flare intervals?

- Side effects?


- Dose/interval?



Outstanding questions

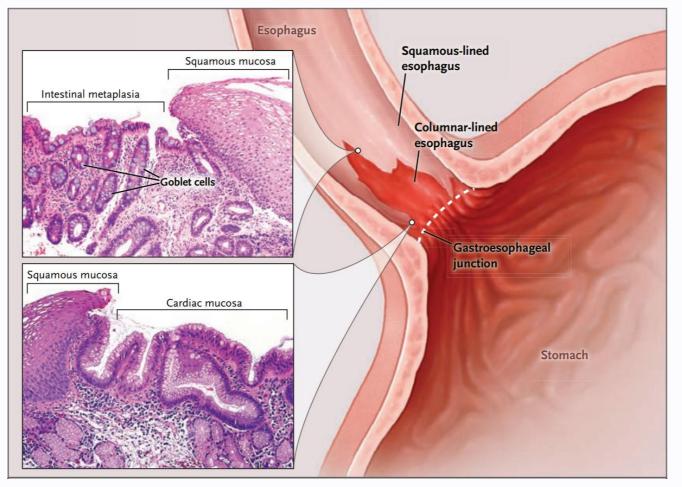

- Biomarkers/patient sub-groups

- Extra-intestinal symptom?

Improved quality of life

Study acronym	ClinicalTrials.gov identifier	Official title
ACHILLE	NCT04589338	Impact of Different Types of Physical Activity in Patients With Chronic Inflammatory Bowel Disease
IBD-FITT	NCT04816812	The IBD-FITT Study - Moderate-intensity Exercise for Patients with Inflammatory Bowel Disease With Moderate Disease Activity: a Randomised Controlled Trial
Special Physical Exercises	NCT04303260	Special Physical Exercises as a Therapeutic Intervention for Inflammatory Bowel Disease
Pre-Habilitation Exercise	NCT02849717	Pre-Habilitation Exercise Intervention for Patients Scheduled for Colorectal Surgical Resection
OATS	NCT04946448	COmbinAtion Therapy of dieT With biologicalS for Crohn's Disease: the OATS Study
iPENS	NCT04225689	The Intensive Post Exclusive Enteral Nutrition Study (iPENS): A Randomised Trial to Evaluate CD- TREAT Diet as a Food Reintroduction Regime in Children and Young Adults With Crohn's Disease
Semi-vegetarian Diet	NCT04835727	Effect of Semivegetarian Diet in Inflammatory Bowel Disease Patients With Clinical Remission
PIONIR	NCT05211518	Preventing IBD Onset in Individuals at Risk
ADDapt	NCT04046913	The ADDapt Diet in Reducing Crohn's Disease Inflammation
Intermittent Reduced Calorie Diet	NCT04147585	Effects of an Intermittent Reduced Calorie Diet on Crohn's Disease

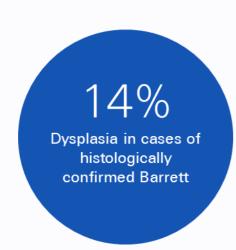
Sudhakhar et al., Gut 2022, online Sep 28th

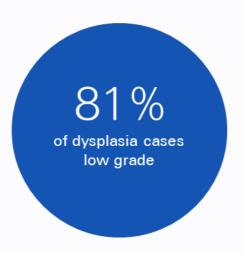


IBD – Most important questions

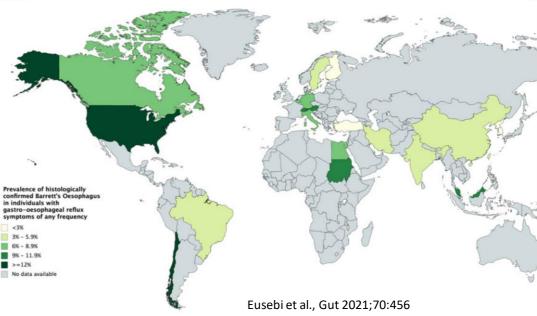
- Extent and severity?
- Treatment? Long-term corticosteroids, immunosuppressive drugs, anti-TNF agents?
- Complications? Anorexia? Underweight?
- Extraintestinal manifestation: Liver? Lung?
- Endoscopic surveillance?

Barrett Esophagus – Columnar metaplasia




Spechler et al., N Engl J Med 2014;371:836

Barrett Esophagus – Prevalence in GERD


- Meta-analysis: > 40 studies, > 25,000 patients
- Pooled prevalence: 7.2% (95%CI, 5.4%-9.3%)
- Highest prevalence reported from North American Studies

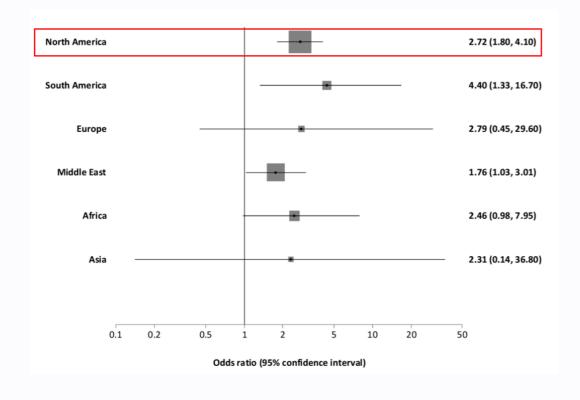
Leonardo Henry Eusebi , ¹ Giovanna Grazia Cirota, ¹ Rocco Maurizio Zagari, ¹ Alexander Charles Ford ²

Barrett Esophagus – Extent of GERD

Reflux symptoms of any frequency

	Number of studies	Number of subjects	Pooled prevalence (%)	95% CI (%)
All studies	42	26 521	7.2	5.4 to 9.3
North American studies 16-18 20 23 25 27 32 37-39 55 59	13	4158	14.0	10.8 to 17.7
European studies ^{22 24 29 34 36 40 43 45}	8	9211	4.9	1.9 to 9.1
Middle Eastern studies ^{31 33 41 47 53 56–58}	8	3392	3.0	1.7 to 4.7
Asian studies ^{30 35 48–52}	7	7414	4.1	1.4 to 8.2
African studies ^{28 42 46}	3	1196	8.0	6.3 to 9.9
South American studies ^{19 21 26}	3	1150	9.1	3.8 to 16.4

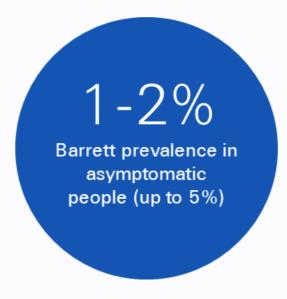
GERD as per the Montreal definition


	Number of studies	Number of subjects	Pooled prevalence (%)	95% CI (%)
All studies	24	14 068	8.2	6.2 to 10.3
North American studies ^{25 27 32 37–39 59}	7	1066	14.3	11.0 to 18.0
European studies ^{22 29 34 36 40 45}	6	7616	5.7	2.3 to 10.6
Middle Eastern studies ^{33 41 53 56}	4	2422	3.8	1.6 to 6.9
Asian studies ^{30 50 51}	3	1125	6.1	1.9 to 12.6
African studies ^{42 46}	2	1091	7.1	6.1 to 9.2
South American studies ^{19 21}	2	748	12.5	10.2 to 15.0

14%
Prevalence of Barrett
in GERD in North
American studies

Eusebi et al., Gut 2021;70:456

Barrett Esophagus – Gender



11% VS 5%
Prevalence Men vs
Women with GERD,
respectively

Eusebi et al., Gut 2021;70:456

Barrett Esophagus in individuals without reflux?

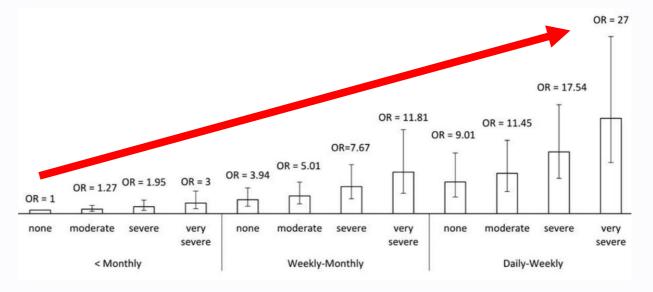
Ronkainen et al., Gastroenterology 2005;129:1825 Rex et al., Gastroenterology 2003;125:1670

Barrett Esophagus – Risk factors

- GERD
- Male gender
- BMI
- Age > 50 years
- Tobacco smoking
- Race
- (Diet)

Characteristic associated with Barrett esophagus	Type of study	No. of studies and participants	Associations
GERD ⁹	Systematic review and meta-analysis	11 studies (1 cross-sectional and 10 cohort studies); N = 575 756 participants	GERD population: 7.21% (95% CI, 5.61%-8.81%); general population: 0.96% (95% CI, 0.75%-1.18%)
Sex ³	Systematic review and meta-analysis	12 cohort studies	Men: 10.8% (95% CI, 6.6%-15.9%); women: 4.8% (95% CI, 2.7%-7.5%)
Age ⁸	Cohort study	29 374 patients undergoing esophagogastroduodenoscopy	<50 y: 0.3%; ≥50 y: 1.1%; P = .02
Tobacco smoking ¹⁰	Cohort study	1056 patients undergoing EGD	Smokers: 12%; nonsmokers: 1.1%; <i>P</i> <.001
Race ¹¹	Cohort	2100 patients undergoing EGD	White: 6.1%; Hispanic: 1.7%; Black: 1.6% P value (White vs Hispanic individuals) = .0002; P value (White vs Black individuals) = .004

Sharma, JAMA 2022;328:663


Barrett Esophagus – Risk factors

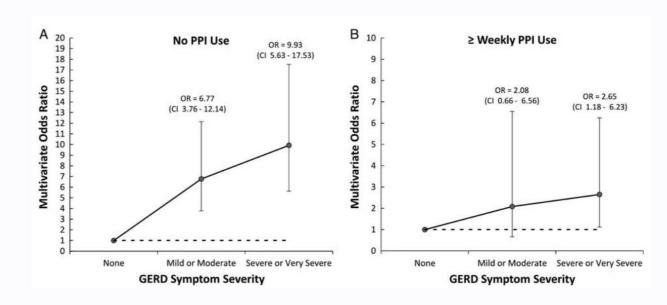
• GERD

- Male gender
- BMI
- Age > 50 years
- Tobacco smoking
- Race
- (Diet)

ORIGINAL ARTICLE

Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett Esophagus in a Large Population

Bakr et al., J Clin Gastroenterol 2018;52:873

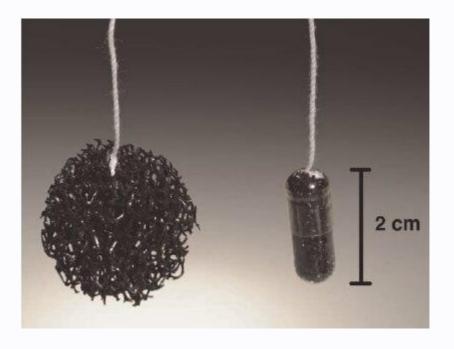


Barrett Esophagus – Risk factors

ORIGINAL ARTICLE

Gastroesophageal Reflux Frequency, Severity, Age of Onset, Family History and Acid Suppressive Therapy Predict Barrett Esophagus in a Large Population

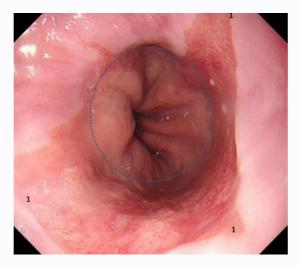
- GERD
- Male gender
- BMI
- Age > 50 years
- Tobacco smoking
- Race
- (Diet)

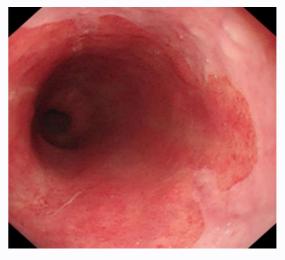


Bakr et al., J Clin Gastroenterol 2018;52:873

Barrett Esophagus – Diagnosis

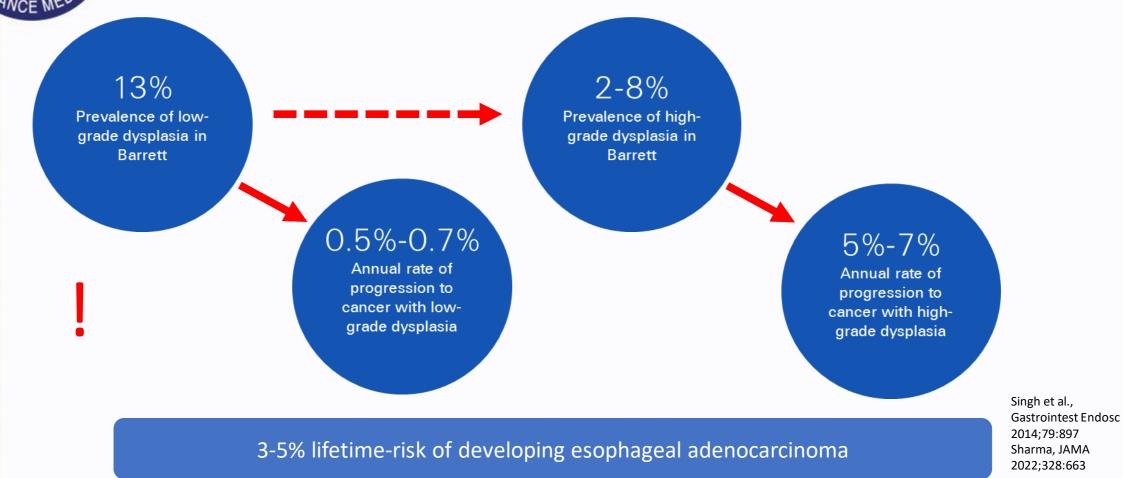
- Conventional white light endoscopy
- Unsedated transnasal ultrathin endoscopy*
- Swallowable, capsule sponge device** (biomarkercombined: trefoil factor 3, methylated DNA markers)


Sharma, JAMA 2022;328:663 Kadri et al., BMJ Clinical Research 2010;341:c4372


^{*} The current ACG guidelines mention unsedated transnasal endoscopy as an alternative to conventional upper endoscopy

** Mentioned by the current ACG guidelines as potential methods for screening patients with chronic GERD and other risk factors

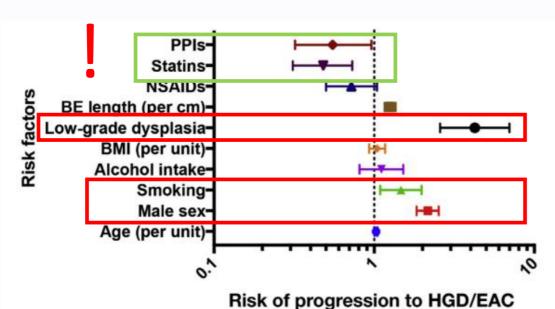
Barrett Esophagus – Short and Long Segment



	Short-Segment	Long-Segment
Length (per definition)	1-3 cm	> 3 cm
Prevalence in GERD	6.7%	3.1%
Progression to Cancer w/o dysplasia	0.06 %/a	0.31 %/a
	Sharma, JAMA 2022;328:663 Barrie et al., Surgical Endoscopy 2021	.;35:4756

Barrett Esophagus – Dysplasia and Risk for Adenocarcinoma

SYSTEMATIC REVIEWS AND META-ANALYSES


Siddharth Singh, Section Editor

Factors Associated With Progression of Barrett's Esophagus: A Systematic Review and Meta-analysis

20 studies, reporting 1231 events in 74943 patients

(odds ratio)

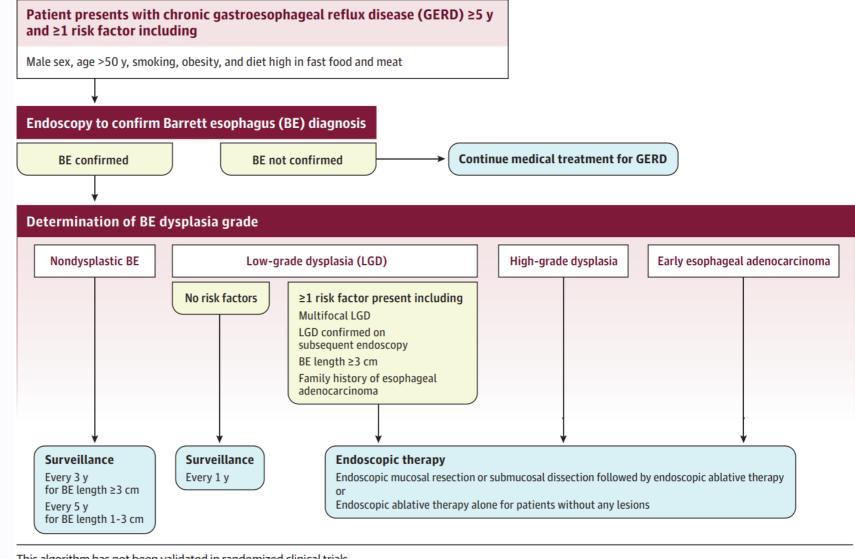
Factor	Studies, n	OR (95% CI)	l ²
Demographic factors			
Age (per unit increase)	12	1.027 (1.007-1.046)	45
Male sex	11	2.16 (1.84-2.53)	0
Lifestyle factors			
Smoking	8	1.47 (1.09-1.98)	26
Alcohol	6	1.11 (0.81–1.52)	8
BMI (per unit increase)	6	1.04 (0.93–1.17)	53
BE characteristics		,	
Baseline LGD (vs NDBE)	11	4.25 (2.58-7.00)	87
BE length (per unit cm)	10	1.25 (1.16–1.36)	47
Medications		,	
NSAID	6	0.72 (0.50-1.04)	18
Statin	3	0.48 (0.31-0.73)	0
PPI	4	0.55 (0.32-0.96)	51
		, , , , , , , , , , , , , , , , , , , ,	

BE, Barrett's esophagus; BMI, body mass index; CI, confidence interval; EAC, esophageal adenocarcinoma; HGD, high-grade dysplasia; LGD, low-grade dysplasia; NDBE, nondysplastic Barrett's esophagus; NSAID, nonsteroidal anti-inflammatory drug; OR, odd's ratio; PPI, proton pump inhibitor.

Krishnamoorthi et al., Clin Gastroenterol Hepatol 2018;16:1046

Barrett Esophagus – Preventing Progression to Cancer

- Chemoprevention
- Endoscopic therapy


Chemoprevention			
Jankowski et al, ³⁴ 2018 *	2557 Patients with Barrett esophagus from the UK	High-dose PPI (esomeprazole 40 mg twice-daily) with acetylsalicylic acid (n = 577); low-dose PPI (esomeprazole 20 mg once-daily) with acetylsalicylic acid (n = 571); high-dose PPI only (esomeprazole 40 mg twice-daily) (n = 704); low-dose PPI only (esomeprazole 20 mg daily) (n = 705)	Composite end point: time to all-cause mortality, esophageal adenocarcinoma, or high-grade dysplasia; at 8.9 y follow-up: high-dose PPI with acetylsalicylic acid, 52/572 (0.09); high-dose PPI only, 139/1270 (0.11); low-dose PPI with acetylsalicylic acid, 99/699 (0.14); low-dose PPI only, 174/1265 (0.14)
Endoscopic therapy for Barrett esophagus			
Shaheen et al, ³⁵ 2009	127 Patients with Barrett esophagus and dysplasia from the US	RFA (n = 84); sham (n = 43)	CE-IM at 12 mo: 77.4% (RFA) vs 2.3% (sham); P < .001
Phoa et al, ³⁶ 2014	136 Patients with Barrett esophagus with low-grade dysplasia	RFA (n = 68); surveillance (n = 68)	CE-IM at 3 y: 88.2% (RFA) vs 0% (surveillance); <i>P</i> < .001
Terheggen et al, ³⁷ 2017	40 Patients with Barrett esophagus with focal high-grade dysplasia or early adenocarcinoma ≤3 cm	Endoscopic mucosal resection (n = 20); endoscopic submucosal dissection (n = 20)	R0 resection rates: 12% (endoscopic mucosal resection) vs 59% (endoscopic submucosal dissection); $P = .01$
Barret et al, ³⁸ 2021	82 Patients with Barrett esophagus with low-grade dysplasia	RFA (n = 42); surveillance (n = 40)	CE-IM at 3 y: 35% (RFA) vs 0% (surveillance); <i>P</i> < .001

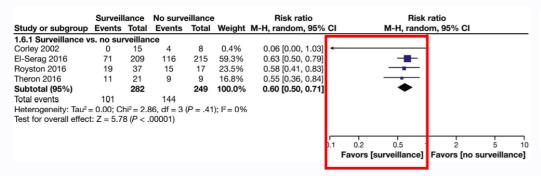
Abbreviations: CE-IM, complete eradication of intestinal metaplasia; PPI, proton-pump inhibitor; RFA, radiofrequency ablation.

Sharma, JAMA 2022;328:663-71 Jankowski et al., Lancet 2018;392:400

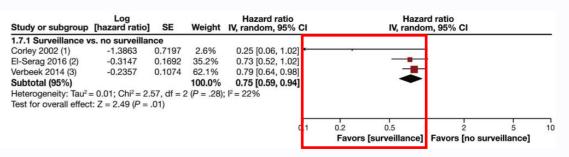
^{*} ACG and AGA recommend acid exposure elimination to prevent progression of Barrett esophagus to esophageal adenocarcinoma

Sharma, JAMA 2022;328:663

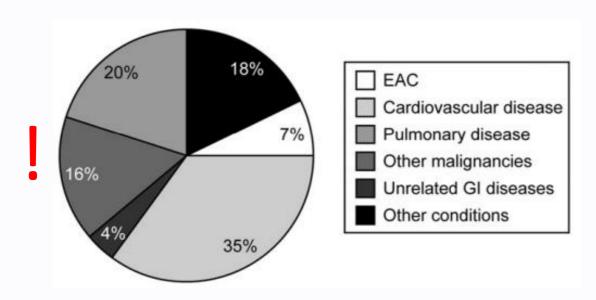
This algorithm has not been validated in randomized clinical trials.

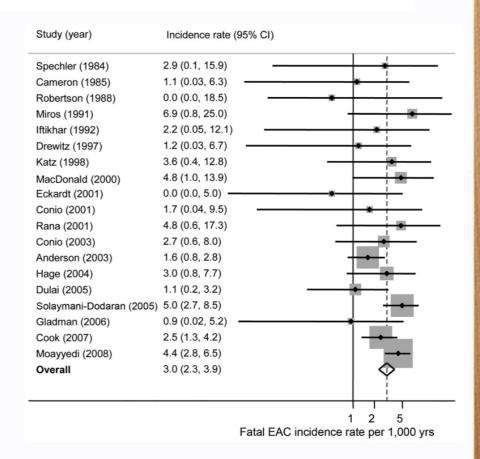


CLINICAL—ALIMENTARY TRACT


The Effect of Endoscopic Surveillance in Patients With Barrett's Esophagus: A Systematic Review and Meta-analysis

EAC-related mortality


All-cause mortality



Risk of Esophageal Adenocarcinoma and Mortality in Patients With Barrett's Esophagus: A Systematic Review and Meta-analysis

- 51 studies
- 14,109 patients, 61,804 person years
- Fatal adenocarcinoma was 3.0/1000 person-years

Sikkema et al., Clin Gastroenterol Hepatol 2010;8:235

Barrett Esophagus – Most important questions

- Is there dysplasia low- or high-grade? Metaplasia only?
- Long- or Short-Barrett?
- Appropriate surveillance / treatment?
- Cardiovascular and pulmonary co-morbidities!

Thank you!

Prof. Dr. Tobias Schiergens

Medical Officer, EMEA Swiss Re L&H Products tobias_schiergens@swissre.com