New Advances in PET and MRI

2014 AAIM Radiology Workshop

Ilya Nasrallah, MD/PhD University of Pennsylvania Department of Radiology

Objectives

- To understand the principles and applications of PET (Positron Emission Tomography) scans in the diagnosis and evaluation of dementia, cancer and epilepsy, including amyloid PET and PET bone scan.
- To understand the principles and applications of advanced techniques for the evaluation of brain neoplasia, including Magnetic Resonance Spectroscopy (MRS), Magnetic Resonance Perfusion, and PET.
- Potential applications of combined PET/MRI scans.

PET IN DEMENTIA

Dementia

Disease-related loss of cognitive abilities, such as memory, severe enough to interfere with activities of daily living and functional independence.

Causes:

- 1. Neurodegeneration: Alzheimer, Dementia with Lewy bodies, Frontotemporal dementia
- 2. Vascular (multi-infarct) dementia
- 3. 'Reversible': NPH, toxic/metabolic, depression

Imaging evaluation of dementia

• MRI

- Evaluate for structural abnormality
- Exclude 'non-neurodegenerative' etiologies
- Evaluate regional atrophy patterns can be subtle
- PET
 - FDG: Evaluate for functional abnormality -- brain metabolic activity is linked to brain activity
 - Amyloid: Evaluate for the presence of abnormal proteins

FDG PET

Most commonly used brain PET tracer

 Brain exclusively uses glucose for energy

Normal FDG PET distribution

J Nucl Med April 1, 2004 vol. 45 no. 4 594-607

FDG PET in AD

- Hypometabolism correlates with neurodegeneration
 - Temporoparietal hypometabolism
 - Changes are multifactorial: atrophy, metabolic rate, synaptic activity
- Changes predictive of progression of AD and cognitive decline

- Less severe but similar pattern in MCI

 Utility in discriminating between different neurodegenerative conditions

Frontotemporal dementia

Summary: FDG in dementia

Patterns of hypometabolism in dementia, presented as Z score; higher value more abnormal http://interactive.snm.org/docs/JNM_096578_pc_f1.jpg

AMYLOID PET IMAGING

Alzheimer dementia: course

Adapted from Barber 2010

Amyloid imaging: ¹⁸F compounds

- Florbetapir F18 (Amyvid, Avid/Eli Lilly)
- Flutemetamol F18 (Vizamyl, GE)
- Florbetaben F18 (Neuraceq, Piramal)
- All FDA approved, none reimbursed by CMS

F18-florbetapir

What does 'positive' mean?

- Amyloid PET studies detect the presence of cerebral amyloid plaques
 - Detects moderate to severe amyloid plaque with high sensitivity and specificity
 - A positive Amyloid PET does NOT mean a patient has Alzheimer disease
- Amyloid PET provides an early biomarker for the pathology seen in AD
 - Potential to detect pathology before neurodegeneration occurs

(Potential) Clinical Utility of Amyloid PET

• Differential diagnosis

- High sensitivity, high negative predictive value
- Potential benefit highest in cases where there is diagnostic uncertainty after initial evaluation
- Several prospective group studies have shown amyloid PET can distinguish between AD and FTD but not between AD and DLB

(Potential) Clinical Utility of Amyloid PET

- Prognosis
 - MCI patients with amyloid convert at a high rate to AD (~70%)
 - Amyloid negative MCI patients have low rate of progression to AD (~10%)
 - Correlation with memory decline in MCI and healthy elderly has been shown in several studies
 - NO ASSOCIATION between amyloid levels and decline in demented patients

Limitations of amyloid PET

- Detects only one of the two pathologic proteins
 - Patients with little amyloid can be given pathologic diagnosis of AD based on tau NFTs
- Interpretation can be challenging at early stages where diagnosis is more difficult
 - Standardized training for each amyloid tracer

Limitations: Cerebral Amyloid in healthy elderly

- Asymptomatic healthy elderly (HC) can have cortical amyloid
 - Prevalence increases with age
- Specificity of a positive amyloid scan *for AD* decreases with increasing age

Adapted from Rowe Neurobiol. Aging 2010

Proposed Appropriate Use Criteria

Society for Nuclear Medicine and Molecular Imaging and Alzheimer's Association

Appropriate*

- Persistent or unexplained MCI
- Possible AD (atypical course or mixed etiology)
- Young onset dementia (< 60 years of age)

* In cases where clinical management would change Johnson JNM 2013

Inappropriate

- Probable AD, typical age of onset
- To determine dementia severity
- Cognitive complaints not confirmed by examination
- Asymptomatic
- Family history of dementia/genetic risk only

Florbetapir F18 negative scan

Florbetapir F18 positive scan

PET IN EPILEPSY

Imaging: Seizure focus localization/evaluation

- Standard: surface EEG and MRI

 Goal: localize seizure focus for possible surgery (focal lesion, temporal lobectomy)
- Adjunct testing, usually for intractable (medically refractory) epilepsy:
 – PET, SPECT
 - Invasive EEG (implanted electrodes)
 - Wada test (via conventional angiogram)

Clinical application of FDG PET in epilepsy

- Adjunct testing when MRI and EEG results are discordant/indeterminate
- High sensitivity (85-90%) for temporal lobe epilepsy
- Lower sensitivity (~55%) for extratemporal epilepsy
 - But can detect cortical dysplasias that are occult on MRI

FDG PET in epilepsy

- Hypometabolism present in seizure focus and adjacent tissue (seizure network)
 - Better prognosis (surgical response) if unilateral and more severe temporal hypometabolism is present
 - Broad seizure network means worse prognosis
 - Can guide invasive EEG lead placement
- FDG PET uptake can be affected by neuroleptics (esp. barbiturates)
- Can affect surgical planning in 50-70%
- Cost effective when MRI/EEG are discordant/indeterminate

Case: mesial temporal sclerosis

Case: cortical dysplasia

PET FOR ONCOLOGY

FDG PET/CT in oncology

- Broadly used modality for cancer staging, restaging, and response assessment
 - Nonspecific radiotracer
- Functional (and structural) data on PET/CT improve characterization
 - Metastases may be small

FDG PET in treatment response

- Treatments may not change size of lesions, especially early
- Allows evaluation of response during therapy
 - Can change from a failing therapy early, sparing sideeffects and cost, or stop a successful therapy early

Limitations of FDG PET in oncology

- Metabolic activity varies between cancers
 - Differentiated thyroid cancer, prostate typically have low glucose uptake
- Sensitivity lower for:
 - Small lesions (< 8 mm)
 - Necrotic/cystic lesions with little solid tissue
- Nonspecific
 - Inflammatory, including treatment-related changes, and other processes can be hypermetabolic

Fluoride PET

- PET Bone scan: Sodium Fluoride
- Increased sensitivity, specificity, and accuracy versus traditional nuclear bone scan
 - Improved characterization as benign or malignant (also benefits from CT study)
 - While individual lesion identification is much better, per patient staging is much less improved
- However FDG PET is about as good for bone metastases... and shows soft tissue metastases
 - NaF best where FDG is poor, i.e. prostate

NaF PET vs. Nuclear bone scan

MR spectroscopy MR perfusion/MR permeability Tractography Functional MRI PET ADVANCED IMAGING OF BRAIN

NEOPLASIA

Brain neoplasm

- Brain metastases (~50% of intracranial neoplasia)
 - Isolated metastasis (~25% of solitary brain tumors)
- Primary neoplasia
 - Meningioma ~40%
 - High grade glioma (HGG), mainly glioblastoma (GBM)
 ~35%
 - Poor survival: 1 year median, 6 months without treatment and 2 years with best therapy
 - Others: Low grade glioma (LGG), lymphoma, neuronal, etc.

Differential diagnosis of intracranial mass lesions

Enhancing mass

- Solitary metastasis
- High grade glioma (HGG)
- CNS lymphoma
- [Some Low grade glioma, esp. oligodendroglioma]
- Meningioma
- Abscess
- Demyelinating lesions

Non-enhancing mass

- Low grade glioma (LGG)
- [Some High grade glioma]
- Encephalitis
- Developmental anomalies (focal cortical dysplasia)

Conventional brain MRI

- University of Pennsylvania conventional MRI exam:
 - T1 axial and sagittal
 - T2 axial
 - FLAIR axial
 - Diffusion-weighted imaging (DWI)
 - T1 post contrast axial and coronal
- Conventional images alone yields important information, but performance is moderate
 - Law et al AJNR 2003: Amongst exclusively glioma cases, in classifying high grade gliomas: sensitivity 73%, specificity 65%, PPV 86%, and NPV 44%

Conventional MRI: enhancement

- Amongst glioma, enhancement, necrosis, and mass effect are correlated with with higher grade
- Development of enhancement in a LGG indicates conversion to HGG
- Homogeneous favors lymphoma, meningioma
- Necrosis favors HGG, metastasis, abscess

Advanced MR imaging study

- Conventional sequences, with/without contrast
- MR spectroscopy (MRS)

 \mathbf{A}

- MR perfusion: dynamic susceptibility (DSC)
- MR permeability: dynamic contrast-enhanced (DCE)
- Tractography and functional MRI (fMRI) as needed
- Goal: improve diagnosis with multiparametric evaluation

MR spectroscopy (MRS)

• Goal: detect weak signals from small molecules

Commonly evaluated CNS metabolites

- N-acetylaspartate (NAA, 2.0 ppm): neuronal marker
- Creatine (Cre, 3.0 ppm): 'reference peak', energy metabolism

- Choline (Cho, 3.2 ppm): cell membrane synthesis
- Lipids (0.9-1.3 ppm): normally absent; associated with necrosis/hypoxia
- Lactate (1.3 ppm, doublet): normally absent; anaerobic metabolism

Applications of MRS

- Low specificity
- Can evaluate for tissue infiltration
- Can be helpful for grading neoplasia
 Lower NAA:Cho indicates higher grade
- Can be useful in non-neoplastic disorders
 - Abscess
 - Metabolic diseases with characteristic metabolites
- Mainly used for problem solving

Summary: MRS Cho NAA Lac Lip Myo Glu Suc Acet Ala Aa 1 Low grade tumor 1 1 High grade tumor î î 1 Metastasis absent 1² Oligodendroglioma 1 Meningioma absent Gliomatosis cerebri absent¹ Lymphoma Radionecrosis 1 Ť î 1 N Abscess 1 1³ 1³ Demyelination t 1

Table 2. H-MRS changes in tumors and differential diagnosis. [↑]- increased peak; [↓] - reduced peak; N- normal peak; Cho – choline; NAA – N-acetylaspartate; Lac – lactate; Lip – lipids; Myo – myoinositol; Glu – glutamine; Suc –succinate; Acet – acetate; Ala –alanine; Aa- amino acids.

¹ NAA is absent in the core of the tumor, but may be present where it infiltrates brain parenchyma or with voxel bleeding.
² The presence of lactate depends on the grade of the tumor.

³ Lac and Glu are increased only in the early stage of the disease.

Bertholdo, Brain Proton Magnetic Resonance Spectroscopy, www.ajnr.org

MR perfusion/permeability

- Evaluate neoangiogenesis, blood brain barrier
 - Neoplasms will at some point require neovascularization to support further growth ('angiogenic switch')
 - Neoangiogenesis associated with abnormal, leaky endothelium
- Blood flow and vascular integrity can be evaluated by several MRI techniques
 - DSC (Dynamic susceptibility contrast) perfusion
 - DCE (Dynamic contrast enhanced) permeability
 - ASL (Arterial spin label): no contrast injection

DSC MR perfusion

 Cerebral blood volume (CBV) is most useful for neoplasms

- For differential diagnosis:
 - Elevated in HGG, metastases, but also some LGG
- Biopsy planning: target high rCBV
- Prognosis: Higher CBV neoplasms demonstrate progression

T1 Dynamic contrast enhanced (DCE) MR permeability

- Newer technology: implementation still evolving, software/methodology not standard
- Various measures of vascularity/vascular integrity
 - K_{trans} : a measure of permeability and blood flow
 - V_p : fractional plasma volume, usually correlates with DSC CBV

Perfusion/permeability

 \mathbf{A}

DSC perfusion

K_{trans}

Tractography

- Diffusion tensor imaging (DTI) fiber tracking
- Major pathways (CST, SLF, etc)
 - Helpful for surgical/radiation therapy planning (proximity of critical large axon tracts to tumor)
- Pitfalls:
 - Failure of tracking due to disruption not seeing does not mean not there
 - Only follows dominant pathways (crossing, sharp turning pathways lost)

Tractography: example

Blue: Corticospinal tract (CST, motor) Green: Superior longitudinal fasciculus (SLF, language)

Functional MRI

- Functional eloquence shows inter-individual variability
 - Precise knowledge can help surgical planning to minimize deficits
- BOLD (Blood oxygen level dependent): changes in activity result in slight changes in blood oxygenation, detectable by MRI
- Pitfalls:
 - Lack of activation does not mean lack of function: Pathology can interfere with MRI success
 - Not all activating foci are eloquent: 'Pseudoreorganization' seen when physiologic changes in brain interfere with activity-BOLD relationship

fMRI: example

Yellow: facial motor task (motor cortex) Purple/red: language tasks (Broca's area)

Post treatment course

Response

- True progression: any time
- Pseudoprogression (Temodar + XRT)
 Pseudoresponse (Avastin)
- Radiation necrosis

	Response	True Progression	Pseudo- progression	Pseudo- response	Radiation Necrosis
Enhancement	Ν	Υ	Υ	Ν	γ
Mass effect	Ν	Υ	Υ	Υ	Y/N
Perfusion	Ν	γ	Ν	Ν	Y/N
MRS	Normal	Neoplastic	Normal	Neoplastic	Low metab.
Timing after therapy	?	Any	3-6 months	Any, Avastin	12-18 months

Radiation necrosis after gamma knife

FDG-PET in brain neoplasia

- Only approved tracer useful for evaluating neoplasm
- Limitations:
 - High uptake in normal gray matter; GBM lower
 - Nonspecific
- Uses:
 - Higher uptake seen in higher grade neoplasm
 - Higher uptake is associated with worse prognosis
 - Can be used to evaluate recurrence (high uptake) versus radiation necrosis (low uptake)
 - Metastases and lymphoma tend to have much higher uptake than gliomas (both LGG and HGG)

FDG for recurrence

Aug 2011

Aug 2013

PET/MRI

PET/MRI

- Technically challenging to build
- Active development (and deployment) by major equipment vendors
- Will allow simultaneous MRI and PET acquisition
 - Need to show benefit above colocalization, which can be performed from separate studies
 - Benefits much clearer for research applications than clinical radiology

Potential applications of PET/MRI

Neuroimaging

- Decreased imaging time for brain tumor or demented patients
- Improved PET resolution with real time motion correction and improved partial volume correction
- Correlation of PET and MRI functional measures, as 'functional state' can vary if scans separated by time

Potential applications of PET/MRI

- Cardiac imaging
 - Improved PET localization during cardiac cycle
- Pediatrics
 - Decreased radiation dose versus PET/CT
- Oncology
 - Can not simply combine traditional whole body
 PET with traditional regional MRI studies

Summary

- Advances in PET imaging
 - Dementia/neurodegeneration: FDG and amyloid PET
 - Epilepsy
 - Oncology: FDG and NaF bone PET scan
- Advanced imaging for brain neoplasia
 - MR spectroscopy
 - Perfusion/Permeability
 - Tractography and fMRI
 - PET

• Potential applications of combined PET/MRI scans.