

MYELOPROLIFERATIVE DISORDERS

Gina C. Guzman, MD, DBIM, FALU, ALMI AAIM

Triennial

2nd VP & Medical Director

October 2012

Myeloproliferative vs. Myelodysplastic

- Myeloproliferative disorders (MPDs) or neoplasms (MPNs)
 - A group of blood diseases characterized by abnormal overproliferation of morphologically "normal" blood cells in the bone marrow
 - Erythrocytosis/polycythemia, thrombocytosis, leukocytosis
- Myelodysplastic syndromes (MDSs)
 - A group of blood diseases characterized by <u>dysplastic</u> bone marrow hyperplasia
 - Poorly formed or dysfunctional cells
 - Variable degrees of peripheral cytopenia

"Classic" vs. "Atypical" Myeloproliferative Disorders (MPDs)

Comparison of FAB and WHO Classifications of Chronic Myeloproliferative Diseases.

FAB	wнo
Chronic myelogenous leukemia	Chronic myelogenous leukemia
Polycythemia vera	Polycythemia vera
Essential thrombocythemia	Essential thrombocythemia
Agnogenic myeloid metaplasia/myelofibrosis	Chronic idiopathic myelofibrosis
	Chronic neutrophilic leukemia
	Chronic eosinophilic leukemia/hypereosinophilic syndrome

French-American-British Classification

2002 World Health Organization

Atypical MPNs: chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, atypical CML, unclassifiable MDS/MPN

Features Common to all MPDs

- Origin in a pluripotent hematopoietic stem cell
- ABNORMAL UNSTIMULATED OVERPRODUCTION of one or more of the formed elements of the blood
- HYPERCELLULAR bone marrow
- ^ Risk for Thrombosis and Bleeding (esp. with PV and ET)
- ^ Risk for Transformation to acute leukemia (AML) and/or marrow fibrosis/myelodysplastic syndrome (MDS)
- Associated genetic mutations of many different tyrosine kinases

Presenting Signs and Symptoms

- · Incidental finding in an asymptomatic person with an abnormal CBC
- Fatigue (81%), Pruritis (52%), Night sweats (49%)
- Secondary causes for abnormal elevations much more common than MPDs
 - · Erythrocytosis
 - Only 5% of patients with persistant erythrocytosis will have PV
 - Dehydration, hypoxia (smoker, altitude, OSA), renal disease
 - Steroids (testosterone for hypogonadism)
 - · Reactive thrombocytosis much more common than ET
 - · Acute phase reactant, infections, inflammatory disease, *anemia

Value of Erythropoietin (EPO)

- Hormone produced by the kidney that promotes the formation of red blood cells (RBCs) in the bone marrow
- Prime regulator of RBC production
- Measurement of serum EPO can be useful in differentiating RBC disorders
 - Normal or ^ in secondary causes of polycythemia
 - Normal or Decreased in Polycythemia Vera
- Normal levels 0 19 mU/mL

JAK2 (V617F) Mutation

- JAK2 (identified in 1993) is the tyrosine kinase protein involved in normal blood cell development
- JAK2 mutation JAK2 (V617F) point mutation (discovered in 2005) allows continuous activation of cell proliferation and resistance to cell death – the most important advance in MPD in 30 years!
- Highly sensitive for MPDs since NOT found in healthy persons, secondary polycythemia, or a reactive blood count elevation
- Diagnostic only for the presence of a MPD, not its type
 - 97% of patients with polycythemia vera (PV)
 - 57% of patients with essential thrombocythemia (ET)
 - 50% of patients with primary myelofibrosis (PMF)

Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054.

Munich RE 🗐 Other Molecular Defects in MPDs Table. The Chronic Myeloproliferative Disorders Disease Molecular Defect* Chronic myelogenous leukemia BCR-ABL Chronic eosinophilic leukemia and the hypereosinophilic syndrome FIP1L1-PDGFRA A negative JAK2 (V617F) does not rule BCR-ABL p230 Chronic neutrophilic leukemia out a MDS Chronic myelomonocytic leukemia TEL-PDGFRB KIT D816V Systemic mastocytosis 10% false negative Polycythemia vera JAK2 V617F (~92% positive) JAK2 exon 12 mutations (3% positive) Essential thrombocytosis JAK2 V617F (~50% positive) **Annals of Internal Medicine** MPL W515L/K (~3% positive) MPL K39N Primary myelofibrosis JAK2 V617F (~50% positive) MPL W515L/K (~14% positive) * Representative molecular defects caused by balanced translocations or point mutations in the chronic myeloproliferative disorders. Ann Intern Med. 2010;152(5):300-306. doi:10.7326/0003-4819-152-5-201003020-00008 Copyright © The American College of Physicians. All rights reserved

Polycythemia Vera (PV) Primary Polycythemia, Polycythemia Rubra Vera

- Most common Myeloproliferative Disorder
- Elevated RBC parameter (RBC, Hgb, Hct, or RBC mass)
- The number of WBCs and Platelets may also increase
- Relatively rare 5 to 20 cases/100,000 in US
 - PCP will make the dx once or twice during his/her career
- Peak incidence 50-70 years old, but may occur at any age
- M:F ratio 2:1
- 97% JAK2 mutation+
- 75% have splenomegaly; pruritis is common

Diagnostic criteria for Polycythemia Vera (PV) Munich RE Hemoglobin >18.5g/dl in men or >16.5g/dl in women (or other evidence of ^ RBC volume) - JAK2(V617F) mutation or other functionally similar mutation such as JAK2 exon 12 mutation Bone marrow biopsy showing hypercellularity with trilineage growth (prominent erythroid, granulocytic and megakaryocytic proliferation) - Low serum erythropoietin level - Endogenous erythroid colony formation (in vitro) - Both major criteria and one minor criterion or - First major and two minor criteria Revised WHO Criteria 2008 (from 2001) Hematology/Oncology Clinics Aug 2009

High Risk PV

- Age > 60
- Previous h/o thrombotic events
- CV risk factors Smoking, HTN, Diabetes
- Leukocytosis WBC > 12,000/uL (60%) at diagnosis
- Platelets > 400,000/uL (50%) at diagnosis

Treatment of PV

- Regular **Phlebotomy** to lower blood viscosity
 - Goal HCT < 45% in men, < 42% in women
 - ^ risk of thromboses and vascular events with HCT > 44%
 - Yields the best overall survival
- Low dose Aspirin
- CV Risk Factor Modification stop smoking!
- Cytoreductive therapy for High Risk RV (hydroxyurea, etc) can decrease the incidence of thromboses
- Goal of therapy normalize CBC and prevent thrombohemorrhagic complications

PV – Mortality/Morbidity

- Median survival for untreated symptomatic patients is 6 to 18 months
- Thomboses account for the majority of morbidity/mortality
- Thrombotic complications 15-60 % depends on control of disease
 - Major cause of death in 10-40% of patients
 - Both venous and arterial thromboses
 - DVT/PE, Stroke, MI, Renal artery/vein thromboses, intestinal ischemia
- Transformation to AML/MDS ~1.5%
- Bleeding complications 15-35%
- With treatment, medial survival is more than 10 years

Essential Thrombocythemia (ET) Essential Thrombocytosis, Primary Thrombocytosis

- · A diagnosis of exclusion, first described in 1934
- Chronic nonreactive elevated platelets without evidence of any other MPD
- Megakaryocyte hyperplasia in the bone marrow
- Prevalence 24 cases/100,000 in US
- Median age at diagnosis 60, up to 20% < 40 years old, extremely rare in kids
- F:M ratio 2:1
- 50% JAK-2 mutation+
- ~50% totally asymptomatic at presentation

Diagnostic Criteria for ET

- A diagnosis of EXCLUSION
 - Sustained Platelet Count ≥ of 450 X 10⁹/L
 - Megakaryoctyic Hyperplasia on Bone Marrow Biopsy
 - Does not meet WHO criteria for PV, PMF, CML, MDS, or any other myeloid neoplasm (Diagnosis of exclusion)
 - +JAK-2 mutation OR no evidence for reactive thrombocytosis
- All four criteria must be met

Revised WHO Criteria 2008 (from 2001) Hematology/Oncology Clinics Aug 2009

High Risk ET

- Age of onset ≥ 60 years old
- History of thromboses
- Platelet count ≥ 1.5 million x 10^9/L
 - Paradoxically ^ risk of bleeding
- WBC count > 15 x10³/uL at diagnosis
- Low hemoglobin level (<12 g/dL in females; < 13.5 g/dL in males)
- CV risk factors: Smoking, Hypertension, Hyperlipidemia, Obesity, Diabetes
- Markers for Hypercoagulability (e.g. Factor V Leiden, Antiphospholipid Ab)
- Increased risk of thromboses, poorer survival

Low Risk ET

- Age at dx < 60 years old
- No history of bleeding or thrombotic events
- WBC < 15,000/microL
- Well followed with stable platelet counts < 1 million/microL
- Good CV profile

Treatment for ET

- Consider observation for low risk patients
- Low dose aspirin
- CV risk factor modification Stop smoking!
- Coumadin for venous thromboses
- Cytoreductive therapy (hydroxyurea, etc) for high risk ET
 - Hydroxyurea vs Anagrelide
 - HU +ASA superior to Anagrelide +ASA (^rate of arterial thromboses, bleeding, transformation, but decreased venous thromboses) (NEJM 2005;353:33-45)
- In emergencies, plateletpheresis for acute thrombosis and/or marked thrombocytosis

Goal Platelet Count

- There is no established target platelet count
- No correlation between platelet count and thrombosis risk
- Goal platelet count:
 - Level where the patient is FREE from symptoms or from the risk of bleeding
 - Generally, less than 900K

ET - Mortality/Morbidity

- Related to thrombotic and bleeding complications
 - Platelet count is elevated but function is impaired
 - ^ Bleeding risk when PLT > 1.5 million
- Transformation Risk < 5% @ 15 years
 - Acute Leukemia (AML) < 5%
 - Myelodysplastic syndrome 4%
 - More common with +JAK 2
- Life expectancy for the low risk group is nearly that of the healthy population

Chronic Myelogenous Leukemia (CML)

Chronic Myeloid Leukemia, Chronic Myelocytic Leukemia

- · Expansion of a clone of cells that carry the Philadelphia Chromosome
- t(9,22) translocation => forms the BCR-ABL cancer gene (discovered 1960)
- · 3 phases

Chronic stable	< 5% blasts	Mild sx
Accelerated	5-30%	^ SX
Blast crisis	> 30%	Aggressive

- Goals of therapy
 - Complete hematologic response (NL WBCs, PLTs, no splenomegaly)
 - Complete cytogenetic response (No Ph-positive cells in BM)

Imatinib mesylate (Gleevec, Novartis)

- · Currently recommended for first-line therapy of CML
- Well tolerated oral medication SPECIFIC tyrosine kinase inhibitor of the protein made by the BCR-ABL cancer gene (first approved TKI)
- FDA-approved since May 2001, 400 mg/day for chronic-phase CML (\$32K/yr)
- Sustained remissions with impressive response rates
 - 2003 NEJM 76% complete cytogenetic response @ 18 months
 - Overall survival 89% at 5 years, cumulative response 83%
- Responses occur quickly (within 2 weeks, almost all by 6 months)
- CML likely to return if drug treatment stopped, follow-up has been short (7 years)
- Main concerns: relapse, progression of disease, development of drug resistance

Clinical practice guideline of the National Comprehensive Cancer Network, Feb 2007, NCI guidelines Mar 2007, N Engl J Med Mar 2003

Second and Third generation TKIs

- dasatinib (SPRYCEL®) Initial US Approval 2006
- nilotinib (TASIGNA®) (2007) **WARNING: QT prolongation and sudden deaths
- bosutinib third generation undergoing clinical trials
- Valuable treatment options for subgroup of patients intolerant or resistant to imatinib
- In the first line-setting lower rates of transformation, comparable or superior complete cytogenetic response compared to imatinib by 2-year f/u.

J Blood Med. 2012:3:51-76.

25

Allogeneic Stem-Cell Transplantation

- Only proven curative treatment for CML, potential toxicity, early mortality risk
- · Leading causes of premature death
 - Relapse of primary disease (29%)
 - Chronic graft-vs-host disease (22%)
 - Up to 70% transplant patients develop some degree of GVHD
 - Prevention/treatment with immunosuppressives
 - Risk for secondary malignancies (treatment related) lymphomas
 - Endocrine abnomalities (premature menopause, hypothyroid)
 - Organ dysfunction (restrictive lung disease, CHF, infections, anemia)
 - Immunity begins to develop and be fully functional ~ 1-1.5 years in the absence of chronic GVHD

Mortality Risks after BMT

- Recurrence of primary disease 29%
 - 67% occurred between 2 to 5 years
 - 27% occurred in the next 5 years
- cGVHD 22% of deaths
- Late infection (in the absence of cGVHD) 11%
- Treatment related causes 25%
 - Second malignancy 7%
 - Pulmonary complications 5%
 - Cardiotoxicity 3%
 - Other treatment related sequelae 8.4%

Blood 2007; 110: 3784-3792

27

Primary Myelofibrosis (PMF)

- Least common MPD, most difficult to diagnose
- ^ collagen in bone marrow => bone marrow fibrosis
- Fever, night sweats, weight loss, fatigue
- 95% with palpable splenomegaly
- Anemia, thrombocytopenia with eventual complete bone marrow failure
- Average survival 5 years
- Allogeneic stem cell transplant is the only possible curative therapy
- Generally considered an uninsurable condition

Munich RE 🗐 MPD Summary Diagnosis, Risk, and Survival varies Thrombotic AML/MDS Diagnostic Bleeding Transformation Survival Criteria Risk Risk ^RBC parameter +JAK 2 Low EPO Untreated 6-8 PV>20% months Treated > 10 years <3% 10% ^PLTs ET Near NL >20% <1% 1% Dx of exclusion ^WBCs CML Untreated > 90% Improving Ph-chromosome Splenomegaly Bone marrow 4% < 5 years **PMF** fibrosis

Gina C. Guzman, MD	THANK YOU VERY MUCH FOR YOUR ATTENTION	атанатанатанатанатанатанатанатанатаната	Munich RE 臺*